
Chapter 4 Boolean Logic 

A digital system, like any other system consists of a group of interrelated parts that form a complex 
whole. But in the field of engineering, system also implies a unique transformation or operation that 
transforms a given input condition to a specific output.  Digital systems have inputs and outputs 
(that are typically reduced to digital signals as discussed in Chapter 1), and the thing that ties them 
together and provides the unique transformation is the digital circuitry.   

In order to design digital circuits in a concise, methodical way, it is necessary to understand some 
underlying theory.  It is important to understand that this theory is independent of circuit 
technology or voltage levels.  In fact, there is no requirement that signals have voltage levels at all, 
only that they are constrained, at any point in time, to one of two possible values.  The physical 
details of the signals are deliberately omitted from this chapter in an effort to focus on the 
semantics or meaning of the signals. 

Rather than cover this theory in isolation (as most texts do), this chapter will lead us through 
several design problems and introduce the theory as it is needed and applicable. 

4.1 Boolean Algebra 

Let’s begin with a practical design problem.  An appliance manufacturer needs a digital system to 
control the hot and cold water valves on an automatic washing machine. The user can select hot, 
warm or cold wash temperature, but the rinse temperature is always cold.  Finally, the legal 
department requires that the hot water valve cannot be on when the lid is open unless the user has 
selected hot. (If someone selects warm water, which normally opens both valves, and burns 
themselves because the cold water valve has failed, there might be a liability issue.) 

The next step is to determine the inputs and outputs of the system.  Only then can we clearly 
understand what the system is required to do.  The buttons that select wash temperature provide 
three input signals for hot, warm and cold. The main controller provides two more inputs that 
indicate whether wash or rinse water is needed. The lid also sends a signal to indicate that the lid 
door is open. There are two outputs; one turns on the hot water valve and the other turns on the 
cold.  
 



So where do we go from here? We can write a verbal description for each output, for example: 

Turn on the cold water valve when the controller is requesting rinse water or when the controller is 
requesting wash water and the user has not selected hot. 

Turn on the hot water valve when the controller is requesting wash water and the user has selected 
hot or warm water, but not if the user has selected warm water and the lid is open. 

The verbal descriptions help humans understand the problem better, but they don’t really get us 
closer to a design. Thankfully, the theoretical work of George Boole gives us an alternative. He 
realized that the principles of algebra also apply to logical propositions (statements that are 
classified as either true or false). In the algebra he developed (which is called Boolean Algebra), 
variables and expressions represent logical propositions and are also either true or false.  

The next step in the design, then, is to represent all inputs and outputs of the system as Boolean 
variables. Once that is done, the only real difficulty that remains is finding a mathematical 
transformation that maps the possible inputs to the desired outputs.  For this design, one choice of 
Boolean input and output variables is shown below. 

 Input Variable Description  
 HOT True if user has requested hot wash water, false otherwise. 
WARM True if user has requested warm wash water, false otherwise.  
COLD True if user has requested cold wash water, false otherwise. 
WASH True if the controller is requesting wash water, false otherwise 
RINSE True if the controller is requesting rinse water, false otherwise 
LID True if the lid is open, false otherwise 

.  Output Variable Description  
 HOT_VALVE True if the hot water valve is open, false otherwise. 
COLD_VALVE True if the cold water valve is open, false otherwise. 

There are three fundamental logic operations that can be applied to Boolean variables: and, or and 
not.  The meaning of these is defined by the truth tables in Figure 4-1.  (A truth table gives the result 
of an operation for every possible combination of operands.) Note that the behavior of or may not 
be what you expect when both operands are true. 

A B A and B  A B A or B  A not A 
false false false  false false false  false true 
false true false  false true true  true false 
true false false  true false true    
true true true  true true true    

 

Figure 4-1 Truth Tables for and, or and not. 

And, or and not are sufficient to describe any logical relationship between Boolean variables, no 
matter how complex.  For example, a logical expression for the cold water valve is: 

 COLD_VALVE = RINSE or (WASH and not HOT) (4.1) 



The expression for the hot water valve is a little more complex: 

 HOT_VALVE = WASH and (HOT or WARM) and not (WARM and LID) (4.2) 

The student is encouraged to look back at the verbal descriptions and verify that these logical 
expressions are derived directly from those descriptions. 

We often need to manipulate logical expressions.  For example, the expression for HOT_VALVE is 
more complicated than necessary, and we may want to manipulate the expression to simplify it. The 
notation above is easy to understand, but it does not easily lend itself to algebraic manipulation. 
Boolean Algebra solves this problem by adopting mathematical notation for constants, variables 
and logic expressions. This notation is described below: 

In Boolean algebra, a one (1) is equivalent to true, and a zero (0) is equivalent to false.  

The and operator is represented by the symbol “·” and follows all the algebraic rules for 
multiplication. The result of the and operation is called the product.  The product of the Boolean 
variables A and B is written A·B (or simply AB if the meaning is clear).  

The or operator is represented by the symbol “+” and follows all the algebraic rules for addition. 
The result of the or operation is called the sum.  The sum of Boolean variables A and B is written 
A+B. Note that and has precedence over or, so in the expression A+B·C, B·C is evaluated first. 

The result of the not operator is called the complement. The not operator may be represented by 
several different symbols.  This text uses overbar (⎺) notation, which means that the complement of 
the Boolean variable A is written 퐴̅.  Other texts may write it ¬A, ~A or A’. The overbar notation may 
also be used with expressions, such as 퐴 + 퐵.  The expression under the bar is always evaluated 
before the not operator is applied.  

Using this notation, the truth tables in Figure 4-1 can be rewritten as shown in Figure 4-2. 

A B A · B  A B A + B  A 퐴̅ 
0 0 0  0 0 0  0 1 
0 1 0  0 1 1  1 0 
1 0 0  1 0 1    
1 1 1  1 1 1    

 

Figure 4-2 Truth Tables for and, or and not in Boolean Algebra. 

The logical expressions for the cold and hot water valves can now be rewritten: 

 COLD_VALVE = RINSE + WASH · 퐻푂푇 (4.3) 

 HOT_VALVE = WASH · (HOT + WARM) · 푊퐴푅푀 · 퐿퐼퐷 (4.4) 

At first, this notation may not be as easy to understand, but with practice it will become as natural 
as the notation in Equations 4.1 and 4.2. 



Example 4.1. A safe manufacturer wants to design a safe that has two key switches, one for the 
manager and one for the assistant manager. The safe will also have a clock so that the door can be 
opened with either key during business hours, but both keys are required to open the safe after 
hours.  You are to design a digital system to drive a solenoid that unlocks the door. (a) list the input 
and output signals that the system requires, (b) write down a verbal description for what the 
system should do, (c) define the Boolean variables you would use for input and output, and (d) 
write an expression for each output using Boolean Algebra. 

Solution: 
(a) List the input and output signals that the system requires. 

Each key switch sends a signal that tells whether or not the key has been turned. The clock 
generates a signal that indicates whether or not the current time is during business hours. The 
output of the system is a signal to unlock the door. 

(b) write down a verbal description for what the system should do.  

Unlock the door when either key is turned during business hours or when both keys are turned after 
business hours.  

(c) Define the Boolean variables you would use for input and output. 

 Input Variable Description  
KEY1 One (1) if the manager’s key has been turned, zero (0) otherwise. 
KEY2 One (1) if the assistant manager’s key has been turned, zero (0) otherwise.  
BUSINESS_HOURS One (1) if the clock indicates that it is currently during business hours, 
   zero (0) otherwise. 

 Output Variable Description  
UNLOCK One (1) if the door-unlock solenoid is on, zero (0) otherwise. 

(d) Write an expression for each output using Boolean Algebra. 
 UNLOCK = (KEY1+KEY2) · BUSINESS_HOURS + KEY1 · KEY2 · 퐵푈푆퐼푁퐸푆푆_퐻푂푈푅푆 

We will see how to design digital circuitry to implement the logical equations in Chapter 5. 

One last operator that is sometimes used in Boolean Algebra is exclusive-or. This operator is much 
like or, except that if both operands are true, the result is false (See Figure 4-3).  The exclusive-or 
operator is represented by the symbol “⨁” and also follows the algebraic rules for addition. The 
exclusive or of Boolean variables A and B is written A ⨁ B.  Note that this operator it is not actually 
necessary because: 

 A⨁B  = 퐴퐵 + 퐴̅퐵 (4.4) 

The exclusive-or operator had more utility years ago when digital circuits largely consisted of 
small-scale integration logic chips, but today its value is debatable. 



A B A ⨁ B 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

 

Figure 4-3 Truth Table for the exckusive-or operator. 

4.2 Truth Tables, Minterms and Maxterms 

Sometimes, the logical expression that relates the inputs of a system to the outputs cannot be easily 
derived from the problem statement. For example, suppose we are to design a prime number 
detecting circuit that takes a 3-bit binary number as an input and tells whether or not the number is 
prime.  Even if we write a verbal expression and define the Boolean variables, the logical expression 
is still illusive: 

Verbal expression: If the input number is 2, 3, 5 or 7, output a 1, otherwise output a 0. 

Boolean Variables: 

 Input Variable Description  
 B0 Least significant (1’s) bit of the input binary number. 
B1 2’s bit of the input binary number. 
B2 4’s bit of the input binary number. 

 Output Variable Description  
 PRIME 1 if the number is prime, 0 otherwise. 

Logical Expression: ? 

In cases like these, we can use a truth table to derive a logical expression as long as we know what 
the output should be for any given input. A truth table lists every possible input combination and 
the output(s) for each.  To create a truth table, make columns for each input and each output of the 
digital circuit.  Put the inputs on the left and the outputs on the right, separated by a vertical line. 
The ordering is arbitrary, but once it is chosen, you have to stick with it.  Next, treat the inputs like 
bits in a binary number and write down every possible input combination in numerical order.  For 
the prime number detector, above, this step is illustrated in Figure 4-4. 

B2 B1 B0 PRIME 
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  

 

Figure 4-4 Truth Table Inputs in Numerical Order. 



Now consider each row, one at a time and answer the question: what should the output(s) be?  For 
the first line of the prime number detector, B2B1B0 = 000 which is zero in binary. Zero is not prime, 
so the output should be 0.  If this process is repeated for each row, the truth table in Figure 4-5 
emerges: 

B2 B1 B0 PRIME 
0 0 0 0 
0 0 1 0 
0 1 0 1 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 0 
1 1 1 1 

 

Figure 4-5 Truth Table for the Prime Number Detector. 

Could we have listed the inputs B2, B1 and B0 in a different order? Absolutely.  The truth table would 
be different (and perhaps more confusing), but it would still be valid.  

But the question still remains: How is a truth table going to help us derive a logical expression? In 
order to answer that, we must understand minterms and maxterms. 

Minterms 
A minterm is a logical expression that is true (1) for one and only one row of the truth table. For any 
row, the associated minterm is the product of every input that is 1 in the row and the complement 
of every input that is 0. To illustrate, Figure 4-5 shows a truth table for all the minterms with three 
inputs. 

 
A 

 
B 

 
C 

퐴̅퐵퐶̅ 
(m0) 

퐴̅퐵퐶 
(m1) 

퐴̅퐵퐶̅ 
(m2) 

퐴̅퐵퐶 
(m3) 

퐴퐵퐶̅ 
(m4) 

퐴퐵퐶 
(m5) 

퐴퐵퐶̅ 
(m6) 

퐴퐵퐶 
(m7) 

0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 1 0 0 0 0 0 0 
0 1 0 0 0 1 0 0 0 0 0 
0 1 1 0 0 0 1 0 0 0 0 
1 0 0 0 0 0 0 1 0 0 0 
1 0 1 0 0 0 0 0 1 0 0 
1 1 0 0 0 0 0 0 0 1 0 
1 1 1 0 0 0 0 0 0 0 1 

 

Figure 4-5 Truth Table of Minterms. 

Each minterm is also denoted mi, where i is the row of the truth table (starting with 0) where the 
minterm is true (1).  The number of minterms depends on the number of inputs.  In general, if a 
truth table has n inputs, there will be 2  minterms denoted m0 through m . 

The key observation is that a logical expression can be formed for any output in a truth table simply 
by taking the sum of the minterm(s) corresponding to rows in the truth table where the output is 1. 



Figure 4-6 shows the truth table for the prime number detector, except that it is annotated with the 
minterms for the rows where PRIME is 1. These are the minterms that will contribute the logical 
expression for PRIME. 

B2 B1 B0 PRIME  Minterms 
0 0 0 0   
0 0 1 0   
0 1 0 1  퐵 퐵 퐵  
0 1 1 1  퐵 퐵 퐵  
1 0 0 0   
1 0 1 1  퐵 퐵 퐵  
1 1 0 0   
1 1 1 1  퐵 퐵 퐵  

 

Figure 4-6 Truth Table for the Prime Number Example, Annotated with Minterms. 

All that remains to derive a logical expression is to sum these minterms: 

 PRIME = 퐵 퐵 퐵  + 퐵 퐵 퐵  + 퐵 퐵 퐵  + 퐵 퐵 퐵  (4.6) 

This expression can also be written: 

 PRIME = m2 + m3 + m5 + m7 (4.7) 

Some authors use a shorthand notation for the sum of minterms shown below: 

 PRIME = ∑m(2,3,5,7) (4.8) 

Maxterms 
A maxterm is a logical expression that is 0 for one and only one row of the truth table. For any row, 
the associated maxterm is the sum of every input that is 0 in the row and the complement of every 
input that is 1 in the row (See Figure 4-7). 

 
A 

 
B 

 
C 

A+B+C 
(M0) 

퐴+퐵+퐶̅ 
(M1) 

퐴+퐵+퐶 
(M2) 

퐴+퐵+퐶̅ 
(M3) 

퐴̅+퐵+퐶 
(M4) 

퐴̅+퐵+퐶̅ 
(M5) 

퐴̅+퐵+퐶 
(M6) 

퐴̅+퐵+퐶̅ 
(M7) 

0 0 0 0 1 1 1 1 1 1 1 
0 0 1 1 0 1 1 1 1 1 1 
0 1 0 1 1 0 1 1 1 1 1 
0 1 1 1 1 1 0 1 1 1 1 
1 0 0 1 1 1 1 0 1 1 1 
1 0 1 1 1 1 1 1 0 1 1 
1 1 0 1 1 1 1 1 1 0 1 
1 1 1 1 1 1 1 1 1 1 0 

 

Figure 4-7 Truth Table of Maxterms. 

Just as each minterm is denoted mi, each maxterm is denoted Mi, where Mi is zero on row i of the 
truth table.  Minterms and maxterms are logical complements of each other, that is: 

  푀 = 푚   and  푚 = 푀  (4.9) 



Like minterms, maxterms can also be used to form a logical expression for any output in a truth 
table.   The expression can be formed by taking the product of the maxterm(s) corresponding to 
those rows in the truth table where the output is 0. If, for example, this approach is applied to the 
prime number detector, we get another logical expression for PRIME:  

 PRIME = (퐵 + 퐵 + 퐵 )(퐵 + 퐵 + 퐵 )(퐵 + 퐵 + 퐵 )(퐵 + 퐵 + 퐵 ) (4.10) 

Equation 4.9 is logically equivalent to Equation 4.6. Both generate exactly the same result for every 
possible combination of inputs.  This expression can also be written: 

 PRIME = M0M1M4M6 (4.11) 

Some authors prefer a shorthand notation for the product of maxterms shown below: 

 PRIME = ∏ 	M(0,1,4,6) (4.12) 

4.3 Properties and Theorems 

Whether the logic expression can be derived directly from the problem statement or it is obtained 
using a truth table, chances are, it will not be is simplest form.  It may surprise you to learn that all 
but one of the logic expressions we derived in Sections 2.1 and 2.2 can be simplified. Complicated 
expressions lead to complicated (and more expensive) digital circuits, so for a design to be optimal, 
it is usually necessary to simplify. 

To simplify an expression in any algebraic system, it is necessary to have a clear understanding of 
the properties and the applicable theorems for that system.  In Boolean Algebra, most of these come 
in pairs. The dual of a property or theorem can be obtained by exchanging the operators · and +, 
and exchanging the constants 0 and 1. Figure 4-8 shows the basic properties for Boolean algebra. 

 Property (a) Dual (b)  

Properties of 
0 and 1: 

푋 + 0 = 푋 
푋 + 1 = 1 

푋 · 1 = 푋 
푋 · 0 = 0 

(4.13) 
(4.14) 

Idempotent: 푋 + 푋 = 푋 푋 · 푋 = 푋 (4.15) 

Complementarity: 푋 + 푋 = 1 푋 · 푋 = 0 (4.16) 

Involution: (푋) = 푋  (4.17) 

Reflexive 푋 = 푋  (4.18) 

Commutative: 푋 + 푌 = 푌 + 푋 푋푌 = 푌푋 (4.19) 

Associative: (푋 + 푌) + 푍 = 푋 + (푌 + 푍) (푋푌)푍 = 푋(푌푍) (4.20) 

Distributive: 푋 · (푌 + 푍) = 푋푌 + 푋푍 푋 + (푌푍) = (푋 + 푌)(푋 + 푍) (4.21) 

 
 Figure 4-8 Properties of Boolean Algebra. 



These properties follow from the definitions of and, or and not in Figure 4-2, and can easily be 
proven by exhaustion.  Simply try every possible variable combination and verify that both sides of 
the equation yield the same value.  

Example 4.2. Prove property 4.16a from Figure 4-8. 

Solution: This property can be proved by exhaustion. Since there is only variable, there are 
21 = 2 cases. For each of these cases, we must verify that the expression 푋 + 푋 = 1. 
These 2 cases and the proofs for each case are enumerated below: 

X Proof  
0 0+1 = 1.   1+0 = 1.   
1 1+0 = 1.   0+1 = 1.   

 

 
 

Example 4.3. Prove property 4.21b from Figure 4-8. 

Solution: This property can be proved by exhaustion. Since there are three variables, there are 
23 = 8 cases. For each of these cases, we must verify that the expression X+(Y·Z) = (X+Y)(X+Z). 
These 8 cases and the proofs for each case are enumerated below: 

X Y Z Proof  
0 0 0 0+(0·0) = 0+0 = 0.  (0+0)(0+0) = 0·0 = 0.    
0 0 1 0+(0·1) = 0+0 = 0.  (0+0)(0+1) = 0·1 = 0.    
0 1 0 0+(1·0) = 0+0 = 0.  (0+1)(0+0) = 1·0 = 0.    
0 1 1 0+(1·1) = 0+1 = 1.  (0+1)(0+1) = 1·1 = 1.    
1 0 0 1+(0·0) = 1+0 = 1.  (1+0)(1+0) = 1·1 = 1.    
1 0 1 1+(0·1) = 1+0 = 1.  (1+0)(1+1) = 1·1 = 1.    
1 1 0 1+(1·0) = 1+0 = 1.  (1+1)(1+0) = 1·1 = 1.    
1 1 1 1+(1·1) = 1+1 = 1.  (1+1)(1+1) = 1·1 = 1.    

 

 
 

There are also three theorems that are useful for simplifying logic expressions. These theorems are 
shown in Figure 4-9. 

 Theorem (a) Dual (b)  

Absorption: 푋 + 푋푌 = 푋 푋(푋 + 푌) = 푋 (4.22) 

Logic Adjacency: 푋푌 + 푋푌 = 푋 (푋 + 푌)(푋 + 푌) = 푋 (4.23) 

De Morgan’s: 푋 + 푌 = 푋푌 푋푌 = 푋 + 푌 (4.24) 

 
 Figure 4-9 Useful Boolean Algebra Theorems. 



The Absorption and Logic Adjacency can be proven exhaustively, but it is easier to prove them 
using the properties in Figure 4-8. For example, the Logic Adjacency Theorem (2.23a) can be 
proven as follows: 

푋푌 + 푋푌 = 푋(푌 + 푌) = 푋 · 1 = 푋. 

De Morgan’s theorem can only be proven exhaustively because it makes use of the relationship 
between and and or that is not assumed by any of the properties in Figure 4-8. The proof of De 
Morgan’s theorem is left as an exercise for the student. 

De Morgan’s theorem is interesting because it can be applied to an expression of arbitrary 
complexity. To simplify a complemented expression, simply exchange the and and or operators, 
then complement each variable or subexpression. Often it is a good idea to insert explicit 
parenthesis and and operators (·) before applying De Morgan’s theorem. 
 

Example 4.4. Apply De Morgan’s theorem to simplify the expression (퐴̅ + 퐵)퐶퐷. 

Solution: First, insert an explicit and operator (explicit parentheses are not necessary): 

 (퐴̅ + 퐵) · 퐶퐷 

Then, exchange · and +, and complement 퐴̅, B and 퐶퐷: 

 (퐴̅ + 퐵) · 퐶퐷 = 퐴̅̅ · 퐵 + 퐶퐷 = 퐴퐵 + 퐶퐷 

The Logical Adjacency theorem is the basis for most simplification of logic expressions. Recall the 
expression for PRIME from the example design in Section 2.2: 

 PRIME = 퐵 퐵 퐵  + 퐵 퐵 퐵  + 퐵 퐵 퐵  + 퐵 퐵 퐵  (4.6) 

Using the logic adjacency theorem,  퐵 퐵 퐵  + 퐵 퐵 퐵 = 퐵 퐵  and 퐵 퐵 퐵  + 퐵 퐵 퐵 = 퐵 퐵 , so 

 PRIME = 퐵 퐵 + 퐵 퐵  (4.25)  

Example 4.5. Find another simplified expression for PRIME based on Equation (4.10) 

Solution: Equation (4.10) states 

 PRIME = (퐵 + 퐵 + 퐵 )(퐵 + 퐵 + 퐵 )(퐵 + 퐵 + 퐵 )(퐵 + 퐵 + 퐵 ) 

Using the logic adjacency theorem,  (퐵 + 퐵 + 퐵 )(퐵 + 퐵 + 퐵 ) = 퐵 + 퐵  and 
 (퐵 + 퐵 + 퐵 )(퐵 + 퐵 + 퐵 ) = 퐵 + 퐵 , so 

 PRIME = (퐵 + 퐵 )(퐵 + 퐵 )  



Obviously, reducing a complex expression like 푋푌 + 푋푌  to X has a substantial benefit.  What is not 
obvious is that sometimes the process must be reversed to find the simplest form. Consider how 
you would approach the logic expression below: 

 퐴퐵 + 퐵퐶 + 퐴̅퐵퐶̅ (4.26) 

Often, the trick is to expand the terms by applying the logic adjacency theorem in reverse, then 
combine terms in a different way. In this case we can replace AB with 퐴퐵퐶 + 퐴퐵퐶̅ and get: 

 퐴퐵퐶 + 퐴퐵퐶̅ + 퐵퐶 + 퐴̅퐵퐶̅ (4.27) 

By absorption, 퐴퐵퐶 + 퐵퐶 = 퐵퐶, and by logic adjacency, 퐴퐵퐶̅ + 퐴̅퐵퐶̅ = 퐵퐶̅.  Making these 
substitutions we have 

 퐵퐶 + 퐵퐶̅, (4.28) 

Which, through one more application of logic adjacency, reduces to B. 
 
Example 4.6 Simplify the expression for the hot water valve for the washing machine design: 

 HOT_VALVE = WASH · (HOT + WARM) · 푊퐴푅푀 · 퐿퐼퐷  

Solution: First, apply De Morgan’s theorem to replace 푊퐴푅푀 · 퐿퐼퐷 with (푊퐴푅푀 + 퐿퐼퐷), then 
reduce using properties (2.21a) twice, (2.16b) and (2.13a): 

 HOT_VALVE  = WASH · (HOT + WARM) · (푊퐴푅푀+퐿퐼퐷) 
  = WASH · (HOT ·푊퐴푅푀 + HOT ·퐿퐼퐷 + WARM ·푊퐴푅푀 + WARM ·퐿퐼퐷)  
  = WASH · (HOT ·푊퐴푅푀 + HOT ·퐿퐼퐷 + 0 + WARM ·퐿퐼퐷)  
  = WASH · (HOT ·푊퐴푅푀 + HOT ·퐿퐼퐷 + WARM ·퐿퐼퐷) 

Now, use logic adjacency in reverse to replace HOT·퐿퐼퐷 with HOT·푊퐴푅푀·퐿퐼퐷 + HOT·WARM·퐿퐼퐷: 

 HOT_VALVE = WASH · (HOT·푊퐴푅푀 + HOT·푊퐴푅푀·퐿퐼퐷 + HOT·WARM·퐿퐼퐷 + WARM·퐿퐼퐷) 

Finally, combine terms using absorption: 

 HOT_VALVE = WASH · (HOT·푊퐴푅푀 + WARM·퐿퐼퐷) 

The astute reader may have noticed that the term HOT·푊퐴푅푀 in the solution of Example 4.4 seems 
redundant.  If HOT is true, WARM has to be false, right?  That’s correct, but the information that HOT 
and WARM are mutually exclusive was lost when we derived the logic expression in Section 4.1. A 
solution to this problem will be presented in Chapter 7. 

One simplification approach that often works when some terms in an expression contain more 
variables than others, is to look for ways to introduce new terms that can combine with the larger 
terms using logic adjacency. For example, consider the following expression: 

 퐴퐵 + 퐴̅퐵퐶 (4.29) 



It is possible to use absorption to introduce a new term in the expression because AB = AB+ABC: 

 퐴퐵 + 퐴퐵퐶 + 퐴̅퐵퐶 (4.30) 

By logic adjacency, 퐴퐵퐶 + 퐴̅퐵퐶 = 퐵퐶, so the expression simplifies to AB+BC. 

Example 4.7 Simplify the equation 퐹 = 퐴̅퐵 + 퐵퐶 + 퐷 + 퐴퐵퐶퐷 + 퐵퐶̅퐷. 

Solution: First, apply De Morgan’s Theorem to get: 

퐹 = (퐴 + 퐵)(퐵 + 퐶̅)퐷 + 퐴퐵퐶퐷 + 퐵퐶̅퐷. 

Repeated application of Property 4.21a gives us:  

퐹 = (퐴퐵 + 퐴퐶̅ + 퐵퐵 + 퐵퐶̅)퐷 + 퐴퐵퐶퐷 + 퐵퐶̅퐷 = 퐴퐵퐷 + 퐴퐶̅퐷 + 퐵퐶̅퐷 + 퐴퐵퐶퐷 + 퐵퐶̅퐷 

Note that 퐴퐵퐷 = 퐴퐵퐷 + 퐴퐵퐶퐷 and that 퐴퐵퐶퐷 + 퐴퐵퐶퐷 = 퐴퐶퐷, so 

퐹 = 퐴퐵퐷 + 퐴퐶̅퐷 + 퐵퐶̅퐷 + 퐴퐶퐷 + 퐵퐶̅퐷. 

Now 퐴퐶̅퐷 + 퐴퐶퐷 = 퐴퐷 and 퐵퐶̅퐷 + 퐵퐶̅퐷 = 퐵퐶̅.  Making these substitutions we have: 

퐹 = 퐴퐵퐷 + 퐴퐷 + 퐵퐶̅. 

Finally, 퐴퐵퐷 + 퐴퐷 = 퐴퐷, so 퐹 = 퐴퐷 + 퐵퐶̅. 

 

Example 4.8. Simplify the expression for UNLOCK in Example 4.1. 

Solution: From Example 2.1, the logic expression for UNLOCK is 

  UNLOCK = (KEY1+KEY2)·BUSINESS_HOURS + KEY1·KEY2·퐵푈푆퐼푁퐸푆푆_퐻푂푈푅푆 
  = KEY1·BUSINESS_HOURS + KEY2·BUSINESS_HOURS + KEY1·KEY2·퐵푈푆퐼푁퐸푆푆_퐻푂푈푅푆 

Note that 

KEY2·BUSINESS_HOURS = KEY2·BUSINESS_HOURS + KEY1·KEY2·BUSINESS_HOURS 

and 

KEY1·KEY2·BUSINESS_HOURS + KEY1·KEY2·퐵푈푆퐼푁퐸푆푆_퐻푂푈푅푆 = KEY1·KEY2. 

After making these substitutions, we have 

 UNLOCK= KEY1·BUSINESS_HOURS + KEY2·BUSINESS_HOURS + KEY1·KEY2 

Or: 

 UNLOCK = (KEY1+KEY2)·BUSINESS_HOURS + KEY1·KEY2 



Exercises 

1. A manufacturer of home security systems wants to integrate a smoke detector and a carbon 
monoxide detector into an existing intruder alarm.  When one or more of the three alarm 
conditions is detected, an audible alarm is generated.  When a responder arrives, he or she 
can silence the alarm with a key switch. (a) list the input and output signals that the system 
requires, (b) write down a verbal description for what the system should do, (c) define the 
Boolean variables you would use for input and output, and (d) write a logic expression for 
the output using Boolean Algebra.  

2. A  digital system takes three inputs and generates an output of a one if and only if the total 
number of (input) ones is odd. (a) Write a truth table for this circuit. (b) Find a logic 
expression for this system using minterms. (c) Find a logic expression for this system using 
maxterms. 

3. Simplify the following logic expressions:  
(a) TBD 
(b) TBD 
(c) TBD 

4. Simplify the following logic expressions. 
(a) TBD 
(b) TBD 
(c) TBD 

5. A digital system takes three inputs and generates an output of a one if and only if the total 
number of (input) ones is two or more.  (a) Write a truth table for this circuit. (b) Find a 
logic expression for this system using minterms. (c) Simplify your answer. (There should be 
a total of 3 ands and 2 ors.) (d) Find a logic expression for this system using maxterms. 
 (e) Simplify your answer. (There should be a total of 3 ors and 2 ands.) 

6. A digital system takes a 3-bit binary number (B2, B1, B0) in the range 1 to 6 and lights seven 
LEDs representing the pips on a die. There are four outputs designated a-d as shown in 
Figure 4-10.  (Pips a through c always light in pairs, so only four outputs are required.) 
 
(a) Write a truth table for this system. (Include all four outputs on a single table.) Hint: It 
will simplify the logic if an input of 0 lights no pips and an input of 7 lights all pips.  (b) Find 
an unsimplified logic expression for each output a-d. (c) Simplify each logic expressions you 
derived in part (b). As a check, the number of operators (and or or) for each simplified 
output are given: a:1, b:1, c: 0, d: 0. 



   
  Figure 4-10 Die pips (Problem 3) 
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